The Parameterized Complexity of the Minimum Shared Edges Problem
نویسندگان
چکیده
We study the NP-complete Minimum Shared Edges (MSE) problem. Given an undirected graph, a source and a sink vertex, and two integers p and k, the question is whether there are p paths in the graph connecting the source with the sink and sharing at most k edges. Herein, an edge is shared if it appears in at least two paths. We show that MSE is W[1]-hard when parameterized by the treewidth of the input graph and the number k of shared edges combined. We show that MSE is fixed-parameter tractable with respect to p, but does not admit a polynomial-size kernel (unless NP ⊆ coNP/poly). In the proof of the fixed-parameter tractability of MSE parameterized by p, we employ the treewidth reduction technique due to Marx, O’Sullivan, and Razgon [ACM TALG 2013]. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory
منابع مشابه
The Minimum Shared Edges Problem on Grid-Like Graphs
We study the NP-hard Minimum Shared Edges (MSE) problem on graphs: decide whether it is possible to route p paths from a start vertex to a target vertex in a given graph while using at most k edges more than once. We show that MSE can be decided on bounded grids in linear time when both dimensions are either small or large compared to the number p of paths. On the contrary, we show that MSE rem...
متن کاملThe Minimum Vulnerability Problem on Graphs
Suppose that each edge e of an undirected graph G is associated with three nonnegative integers cost(e), vul(e) and cap(e), called the cost, vulnerability and capacity of e, respectively. Then, we consider the problem of finding k paths in G between two prescribed vertices with the minimum total cost; each edge e can be shared without cost by at most vul(e) paths, and can be shared by more than...
متن کاملSubexponential parameterized algorithm for minimum fill-in
The Minimum Fill-in problem is to decide if a graph can be triangulated by adding at most k edges. Kaplan, Shamir, and Tarjan [FOCS 1994] have shown that the problem is solvable in time O(2O(k) + knm) on graphs with n vertices and m edges and thus is fixed parameter tractable. Here, we give the first subexponential parameterized algorithm solving Minimum Fillin in time O(2O( √ k log k) + knm). ...
متن کاملTractability of parameterized completion problems on chordal and interval graphs: Minimum Fill-in and Physical Mapping
We study the parameterized complexity of several NP-Hard graph completion problems: The MINIMUM FILL-IN problem is to decide if a graph can be triangulated by adding at most k edges. We develop an O(k 5 mn + f(k)) algorithm for the problem on a graph with n vertices and m edges. In particular, this implies that the problem is xed parameter tractable (FPT). PROPER INTERVAL GRAPH COMPLETION probl...
متن کاملSearching for better fill-in
Minimum Fill-in is a fundamental and classical problem arising in sparse matrix computations. In terms of graphs it can be formulated as a problem of finding a triangulation of a given graph with the minimum number of edges. By the classical result of Rose, Tarjan, Lueker, and Ohtsuki from 1976, an inclusion minimal triangulation of a graph can be found in polynomial time but, as it was shown b...
متن کامل